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Abstract. I present an analysis of the interpretation of anaphora that
takes concepts from type-theoretic semantics, in particular the use of
the Σ and Π dependent type constructors, and incorporates them into a
model-theoretic framework. The analysis makes use of (parametrically)
polymorphic lexical entries. The key ideas are that, in the simplest case,
eventualities can play the role that proof objects do in type-theoretic se-
mantics; that more complex, compositionally-defined, structures can play
that role in other cases; and that pronouns can be modelled by context-
dependent functions from proof objects of the preceding discourse (in
this sense) to entities.
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1 Introduction

Type-theoretic semantics (TTS) is a variety of proof-theoretic semantics accord-
ing to which the meaning of a sentence is a type in some underlying type theory,
such that objects of that type are proofs of the proposition expressed by the
sentence; we may say, then, that the sentence is true if and only if there is some
object of that type [18].

Type theories chosen for TTS tend to be based on the intuitionistic type
theory (ITT) of Martin-Löf [15], which contributes the particularly important
(for TTS analyses) dependent type constructors Σ and Π, defined as in (1).

(1) a. If A is a type and, on the assumption that x is of type A, B is a type,
then (Σx : A)(B) and (Πx : A)(B) are types.

b. Objects of type (Σx : A)(B) are ordered pairs 〈a, b〉 such that a is of
type A and b is of type B[a/x].

c. Objects of type (Πx : A)(B) are functions f with domain A such
that for any object a of type A, f(a) is of type B[a/x].

In TTS, Σ and Π types can be used to give the meanings of existentially and
universally quantified sentences, respectively.1 For example, on the assumptions

1 Σ can also be used to give the meaning of conjunction, and Π implication; this is
reflected in the lexical entries given in Figure 1. Limitations of space prevent any
further consideration of these connections here.



that donkey is the type of donkeys and that (for any x) bray(x) is the type of
proofs that x is braying, (2-a)–(2-b) have the interpretations given by the types
shown in (3-a)–(3-b) respectively.

(2) a. A donkey is braying.
b. Every donkey is braying.

(3) a. (Σx : donkey)(bray(x))
b. (Πx : donkey)(bray(x))

In this analysis, (2-a) is true iff there is some object of the type shown in
(3-a), i.e. an ordered pair consisting of a donkey and a proof that that donkey is
braying. Likewise, (2-b) is true iff there is some object of the type shown in (3-b),
i.e. a function mapping every donkey to a proof that that donkey is braying.

TTS gives us the resources to formalize the famous ‘donkey sentence’ (4)
from [6], in a way that respects the syntax of the English sentence.

(4) Every farmer who owns a donkey beats it.

On the most natural interpretation of (4), the interpretation of it co-varies
with that of a donkey. The well-known problem that this example poses for
model-theoretic semantic (MTS) theories in the tradition of [16] is that this co-
variation cannot straightforwardly be accounted for. In the natural näıve formal-
ization of (4), shown in (5), the variable y in the consequent of the conditional is
outside the scope of the existential quantifier.2 Its interpretation would therefore
not covary with donkeys according to standard model theory.3

(5) ∀x.(farmer(x) ∧ ∃y.donkey(y) ∧ own(x, y))→ beat(x, y)

There is a truth-conditionally adequate formalization of (4), shown in (6),
but this leaves an explanatory gap as to why the (normally) existential a donkey
should end up being translated as a universal quantifier.

(6) ∀x.∀y.(farmer(x) ∧ (donkey(y) ∧ own(x, y)))→ beat(x, y)

By contrast, as first pointed out in [21], in TTS the meaning of (4) can be
expressed by the type shown in (7), where Π has been given as the meaning of
every and Σ has been given as the meaning of a, as expected. (This translation
also makes use of the projections p and q, where for any ordered pair 〈a, b〉,
p(〈a, b〉) = a and q(〈a, b〉) = b.)

(7) (Πz : (Σx : farmer)((Σy : donkey)(own(x, y))))(beat(p(z), p(q(z))))

The type shown in (7) is the type of functions f such that:

2 Here and throughout the paper, a dot following a variable binder will often be used
instead of parentheses to indicate unbounded scope to the right.

3 One option, therefore, is to change the model theory so that (5) would be interpreted
in the desired way. This, explicitly, is the approach taken in Dynamic Predicate Logic
(DPL) [8]. Discourse Representation Theory (DRT) [13] and File Change Semantics
(FCS) [10] take a similar approach.



– the domain of f is the set of ordered pairs 〈a, b〉 such that:
• a is a farmer, and
• b is an ordered pair 〈c, d〉 such that
∗ c is a donkey, and
∗ d is a proof that a owns c, and

– f maps every 〈a, 〈c, d〉〉 in its domain to a proof that a beats c.

If and only if there is such a function, then there is an object of the type given in
(7), and therefore, according to TTS, (4) is true on the intended interpretation.

The insight that ITT can be fruitfully applied to natural language semantics
has been expanded into a detailed system in [18], and the analysis of anaphora,
including especially cases like (4), has been developed and improved recently in
[2]. In this paper, I will give an implementation of the ideas underlying the TTS
analysis of anaphora, largely based on [2], in a model-theoretic framework.4 This
implementation has a two-fold motivation. Firstly, it enables us to examine the
extent to which the TTS account of anaphora genuinely depends on an enriched
type theory. Secondly, it provides insight into the relationship between the TTS
account of anaphora and some ‘dynamic’ accounts in the MTS literature, given
the similarity between the system that we end up with and some of them.

The paper is structured as follows. In Section 2 a translation of the account
of [2] into higher-order logic will be built up in stages. In Section 3 I will expand
the analysis to generalized quantifiers and plurals. Section 4 concludes.

2 Translating TTS for Anaphora into MTS

2.1 A First Pass

As a first step in our implementation we can consider again the interpretations
given by TTS to (2-a)–(2-b) shown in (3-a)–(3-b) respectively. For the case of
the Σ type constructor, and hence the existential claim, we have the gloss shown
in (8).

(8) A donkey is braying is true iff there is an ordered pair consisting of a
donkey and a proof that that donkey is braying.

What would constitute a proof that a donkey is braying? In the light of the
helpful discussion in [18], §2.26, I will take the proof object to be an event,
and in general the proof objects denoted by VPs to be eventualities. We will
need in our underlying type theory a basic type v for eventualities, then, in
addition to the basic types e for entities and t for truth values. For reasons to
be discussed in Section 2.2, I will also assume that the unit type 1 is among our
basic types. As (8) shows that we want to express ordered pairs, we will also

4 By this, I mean that meanings will be given as expressions of a logical language,
which are taken to be dispensable in favour of their interpretations in a model (as
in [16]), which is where the ‘real’ semantics is. Expressions of the language of type
theory are not understood this way in TTS; see [14] and [18], §2.27.



need the type constructor × for binary product types in addition to the standard
type constructor � for functional types, along with associated term constructors
(., .) for pairing and [.]0 and [.]1 for left and right projections, respectively.

Given these considerations, (2-a) can be translated into higher-order logic
as shown in (9). Note that I am assuming a ‘Davidsonian’ approach to events
according to which predicates denote relations between individuals and events
directly, rather than mediated by theta roles.

∃ae×v.donkey([a]0) ∧ bray(a)(9)

∃xe.∃ev.donkey(x) ∧ bray(x, e)≡

However, recall that the non-empty type condition reflected in (8) (‘there
is. . . ’) comes from TTS—that is to say, from the natural language semantic ap-
plication of ITT and not from the definitions of the type constructors themselves;
it is not, for example, reflected in (3-a). It therefore seems more appropriate to
say that the compositionally-constructed interpretation of (2-a) is as shown in
(10), and that existential closure of the abstracted variable a comes about from
a discourse process. As we will see in Section 2.2, this will also allow indefinites
to bind pronouns outside of what is normally thought to be their scope.

(10) λae×v.donkey([a]0) ∧ bray(a)

These considerations lead to the provisional lexical entry for a, expressed in
TTS by Σ, shown in (11).5

(11) λP e�t.λV e�v�t.λae×v.P ([a]0) ∧ V ([a]0)([a]1)

Now let us consider the Π type constructor, and the interpretation given to
(2-b) in (3-b) as glossed in (12).

(12) Every donkey is braying is true iff there is a function mapping every
donkey to a proof that that donkey is braying.

Here, we meet a complication that is not present in the discussion of Σ. Given
the definition of the Π type constructor, the domain of the function alluded
to in (12) should just be the set of donkeys. But this is not straightforward to
accomplish in higher-order logic without having a type of donkeys—which is
precisely a feature of TTS that we want to eliminate. The technique that I will
adopt at this point is simply to say that the function is defined on the whole
domain of entities, but that its interpretation is constrained in the right way
whenever it applies to a donkey. Therefore, (3-b) can be translated as shown in
(13), and hence the provisional lexical entry for every, expressed in TTS by Π,
can be given as shown in (14).

λfe�v.∀xe.donkey(x)→ bray(x, f(x))(13)

5 In the type annotations, here and throughout the rest of the paper, brackets are
omitted where possible, on the understanding that both × and � associate to the
right and that × binds more tightly than �.



λP e�t.λV e�v�t.λfe�v.∀xe.P (x)→ V (x)(f(x))(14)

We meet another complication when we consider the interpretation of the
relative pronoun who. As shown in (7), the TTS analysis formalizes this using
Σ, like the indefinite article—this, in fact, is part of what makes the extended
binding scope possible. So we might expect the lexical entry to be as shown in
(15).

(15) λV e�v�t.λP e�t.λae×v.P ([a]0) ∧ V ([a]0)([a]1)

However, on the basis of the provisional lexical entry given for a in (11) and
other natural assumptions, the VP owns a donkey would be translated as shown
in (16), and the types of (15) and (16) don’t fit together.

(16) λxe.λae×v.donkey([a]0) ∧ own(x, a)

This example shows up the need for some limited polymorphism in our lexical
entries. (16) is not quite of the right type to be an argument for (15) because
it contains extra information about an indefinite that was an argument to the
embedded verb, and therefore is of type e�e×v�t rather than e�v�t as expected
by (15).

A similar issue is brought to light if we use (15) to derive the interpretation
of a modified noun not containing any indefinites, for example donkey who brays,
as shown in (17).

(17) λae×v.donkey([a]0) ∧ bray(a)

Unsurprisingly—given that (15) is just a permutation of (11)—(17) is identical
to the interpretation derived for a donkey brays in (10). It is of type e×v�t, not
e�t, and therefore not the right type to be an argument to (11).

The final limitation of the account so far is that there is no obvious way to
incorporate pronouns. In the system set out in the next section, I will follow [2]
and address this limitation by introducing a notion of context and a mechanism
for updating it.

2.2 Full Implementation

In Figure 1 I have given an initial list of lexical entries for a fragment to be used
in this paper.

Some remarks are in order. Firstly, how should we understand the lowercase
Greek letters in the type annotations? I prefer to think of them as metavariables
over types, such that what we have in Figure 1 are schemata over lexical entries.
An alternative is to think of them as genuine type variables that should really be
abstracted over as in System F [7], such that e.g. the translation for and would
be as shown in (18), with the universally-quantified type indicated.

Λα.Λβ.Λγ.λp.λq.λi.λa.p(i)([a]0) ∧ q(i, [a]0)([a]1) :(18)

∀α.∀β.∀γ.(α�β�t)�(α×β�γ�t)�α�β×γ�t

What I want to stress, though, is that in either case we do not need the whole
power of System F , since we only need (and want) the type variables to range



over unquantified types. [5] has provided a set-theoretic model theory for this
kind of polymorphism, whereas there are no set-theoretic models for the full
System F [19].

and 7→λpα�β�t.λqα×β�γ�t.λiα.λaβ×γ .p(i)([a]0) ∧ q(i, [a]0)([a]1)

if 7→λpα�β�t.λqα×β�γ�t.λiα.λfβ�γ .∀xβ .p(i)(x)→ q(i, x)(f(x))

not 7→λQe�α�β�t.λxe.λiα.λfβ�β .∀bβ .Q(x)(i)(b)→ f(b) 6= f(b)

a 7→λP.λV.λiβ .λa(e×α)×γ .P ([a]0)(i) ∧ V ([[a]0]0)(i, [a]0)([a]1)

every 7→λP.λV.λiβ .λf (e×α)�γ .∀ae×α.P (a)(i)→ V ([a]0)(i, a)(f(a))

who 7→λV.λP.λae×α×γ .λiβ .P ([a]0, [[a]1]0)(i) ∧ V ([a]0)(i, ([a]0, [[a]1]0))([[a]1]1)

where P : e×α�β�t and V : e�β×e×α�γ�t

donkey 7→λae×1.λiα.donkey([a]0)

brays 7→λxe.λiα.λev.bray(x, e)

owns 7→λD(e�α�v�t)�β�γ�t.λxe.D
(
λye.λaα.λev.own(x, y, e)

)
regrets 7→λD(v�α�v�t)�β�γ�t.λxe.D

(
λdv.λaα.λev.regret(x, d, e)

)
Giles 7→λP e�α�β�t.λiα.λae×β .P ([a]0)(i)([a]1) ∧ [a]0 = giles

he 7→λV e�α�β�t.λiα.V (gα�e(i))(i)

it 7→λV α�β�γ�t.λiβ .V (gβ�α(i))(i)

where g stands for an arbitrarily-chosen free variable

Fig. 1. Some (schematic) lexical entries

Secondly, note that all the lexical entries incorporate an extra (polymorphic)
argument position for input context, and that context is updated and passed
on in appropriate ways. For example, the lexical entry for and requires that the
first conjunct, and the conjunction as a whole, be dependent on input context i
of (some) type α. The second conjunct is then dependent on i extended with the
contribution of the first conjunct, of type β. The effect of this will be seen in the
treatment of examples to be considered. N.B. for the sake of transparency, the
lexical entry given for conjunction is ‘leftward-looking’, i.e. the first argument is
the first conjunct.

Thirdly, the lexical entry for the common noun has a ‘dummy’ position filled
by abstraction over the unit type. This is so as to achieve uniformity for modified
and unmodified common nouns: both donkey and donkey who brays will be of



type e×α�β�t, for some α and β, and hence the issue of type mismatch raised
in Section 2.1 with respect to these examples does not arise.6

Fourthly and finally, the lexical entries given for the pronouns he and it con-
tain a free variable. The idea is that this free variable is resolved in context,
subject to constraints that will be discussed. This aspect of the analysis is cer-
tainly not crucial: [11] has shown how, with the appropriate syntax, apparently
free variables can actually be lambda-bound and retained in interpretation until
such point as they are discharged. In the interest of making as few assumptions
about syntax as possible, however, I retain a free variable analysis.

2.3 Examples

Now let us consider some examples, beginning with the example of cross-sentential
binding shown in (19), where it is most readily interpreted as roughly synony-
mous with the donkey that brays.

(19) A donkey brays. Giles owns it.

We assume that the input context for (19) contains no information, so it is ∗ : 1.7

In what follows I will use the notation [word]var :=type , meaning the translation
of word on the assumption that the type metavariable var is resolved to type.

The interpretation of the first sentence of (19) proceeds as follows:

a donkey 7→ [a]α,β:=1;γ:=v
(
[donkey]α:=1

)
⇒β λV

e�1×e×1�v�t.λi1.λa(e×1)×v.donkey([[a]0]0) ∧ V ([[a]0]0)(i, [a]0)([a]1)

a donkey brays 7→ [a donkey]
(
[brays]α:=1×e×1

)
⇒β λi

1.λa(e×1)×v.donkey([[a]0]0) ∧ bray([[a]0]0, [a]1)

The interpretation is not dependent on the input context: λi is a vacuous
abstraction. The second sentence is then interpreted as follows:

owns it 7→ [owns]α,β:=1×(e×1)×v;γ:=v
(

[it]α:=e;β:=1×(e×1)×v;γ:=v
)

⇒β λx
e.λi1×(e×1)×v.λev.own(x, g1×(e×1)×v�e(i), e)

Giles owns it 7→ [Giles]α:=1×(e×1)×v;β:=v ([owns it])

⇒β λi
1×(e×1)×v.λae×v.own([a]0, g

1×(e×1)×v�e(i), [a]1) ∧ [a]0 = giles

6 The same issue prompted [2] to switch from treating common nouns as type-denoting
to predicate-denoting.

7 In the rest of the paper this will be referred to as ‘the null context’, and will generally
be assumed.



This time the interpretation is dependent on the input context because of
the pronoun: λi is not a vacuous abstraction. Putting the sentences together, we
have:

(19) 7→ [and]α:=1;β:=(e×1)×v;γ:=e×v ([a donkey brays]) ([Giles owns it])

⇒β λi
1.λa((e×1)×v)×e×v.

(
donkey([[[a]0]0]0) ∧ bray([[[a]0]0]0, [[a]0]1)

)
∧
(
own

(
[[a]1]0, g

1×(e×1)×v�e(i, [a]0), [[a]1]1
)

∧ [[a]1]0 = giles
)

Now the interpretation is potentially dependent on the input context, because i
is within the argument to the free variable g. However, g is also fed [a]0, which
means that it in (19) can refer back to a referent introduced in the first clause.

g is a free variable and is contextually resolved. However, we can impose
constraints on what a natural resolution would be. What we want to say is that
if g is a function the domain of which is a tuple (of tuples . . . ), then a natural
resolution of g is a function that selects an element of (an element of . . . ) that
tuple. This requirement can be given the recursive definition shown in (20).

(20) For any types α, β and γ:

a. λbα.b is a natural resolution function (NRF).
b. λbα×β .[b]0 is an NRF.
c. λbα×β .[b]1 is an NRF.
d. For any terms F : β�γ and G : α�β, λbα.F (G(b)) is an NRF if F

and G are NRFs.

So in particular, λb1×(e×1)×v.[[[b]1]0]0 is a natural resolution function. With
this resolution, (19) would be interpreted as shown in (21).

λi1.λa((e×1)×v)×e×v.
(
donkey([[[a]0]0]0) ∧ bray([[[a]0]0]0, [[a]0]1)

)
∧
(
own

(
[[a]1]0, λb([[[b]1]0]0)(i, [a]0), [[a]1]1

)
∧ [[a]1]0 = giles

)
(21)

λi1.λa((e×1)×v)×e×v.
(
donkey([[[a]0]0]0) ∧ bray([[[a]0]0]0, [[a]0]1)

)
∧
(
own

(
[[a]1]0, [[[a]0]0]0, [[a]1]1

)
∧ [[a]1]0 = giles

)⇒β

This is the interpretation of the two-sentence discourse shown in (19). It is
a relation, as in common in dynamic semantic systems, between an input and
an output. It is also common in dynamic semantic systems to give a derived
truth definition for this relational meaning. What that amounts to in this case
is to take the input to be the null context ∗ : 1 (as discussed above), and then
existentially close the result;8 as noted in Section 2.1, existential closure achieves
the effect of the non-empty type condition from TTS. If we do that, then we

8 This corresponds closely to the truth definition for DRT proposed in [12], p. 149.



derive (22) from (21).

∃a((e×1)×v)×e×v.
(
donkey([[[a]0]0]0) ∧ bray([[[a]0]0]0, [[a]0]1)

)
∧
(
own

(
[[a]1]0, [[[a]0]0]0, [[a]1]1

)
∧ [[a]1]0 = giles

)(22)

∃xe.∃ev.∃ye.∃e1v.
(
donkey(x) ∧ bray(x, e)

)
∧
(
own(y, x, e1) ∧ y = giles

)
≡

(22) accurately represents the intended interpretation of (19).
The system provides a semantic account for why the interpretation of it

cannot covary with donkeys in (23) or (the most natural interpretation of)9

(24).

(23) Every donkey brays. Giles owns it.

(24) Giles does not own a donkey. It brays.

(23) is interpreted as follows:

[and]
α:=1;β:=τ ;
γ:=e×v

(
[every]α,β:=1

(
[donkey]α:=1

) (
[brays]α:=1×e×1

))(
[Giles]α:=1×τ ;β:=v ([owns]α,β:=1×τ ;γ:=v ([it]α:=e;β:=1×τ ;γ:=v)))

⇒β λi
1.λaτ×e×v.∀xe×1

(
donkey([x]0)→ bray([x]0, [a]0(x))

)
∧
(
own([[a]1]0, g

1×τ�e(i, [a]0), [[a]1]1) ∧ [[a]0]0 = giles
)

Where τ := e×1�v. Given the type of the free variable g, there is no way to get
a bound reading for the pronoun.

The explanation in the case of (24) is essentially the same. It is (most natu-
rally) interpreted as follows:

[and]α:=1;β:=e×(τ�τ);γ:=v(
[Giles]

α:=1;
β:=τ�τ

(
[not]

α:=1;
β:=τ

(
[own]

α:=1×e×1;
β:=1;γ:=τ

(
[a]

α,β:=1;
γ:=v

(
[donkey]α:=1

)))))
(

[it]α:=e;β:=1×e×(τ�τ);γ:=v
(

[brays]α:=1×e×(τ�τ)
))

⇒β λi
1.λa(e×(τ�τ))×v.

(
∀bτ
((
donkey([[b]0]0) ∧ own([[a]0]0, [[b]0]0, [b]1)

)
→ [[a]0]1(b) 6= [[a]0]1(b)

)
∧ [[a]0]0 = giles

)
∧ bray(g(1×e×(τ�τ))�e(i, [a]0), [a]1)

Where τ := (e×1)×v. Once again, given the type of the free variable g, there is
no way to get an unattested bound reading for the pronoun.

As in TTS, the treatment of negation here10 is inspired by the equivalence,
in classical and intuitionistic logic, of ¬φ and φ → ⊥. A proof object of Giles

9 Some speakers may allow an interpretation of (24) on which a donkey takes wider
scope than negation. In that case, the pronoun could anaphorically refer back to the
donkey.

10 Figure 1 defines VP negation, which is derived from sentential negation in the obvious
way. The VP formulation is more transparent in terms of compositional semantics,
and also makes Giles available for anaphoric reference.



does not own a donkey is taken to be a pair consisting of Giles and a function
mapping every state of Giles owning a donkey to an absurd (non-self-identical)
object. Therefore, for there to be a proof object of Giles does not own a donkey,
there cannot be a proof object of Giles owns a donkey.

Now we can look at a couple of genuine donkey sentences.

(25) Every farmer who owns a donkey feeds it.

7→ [every]
α:=1×τ ;
β:=1;γ:=v

(
[who]

α,β:=1;
γ:=τ

(
[owns]

α:=σ×e×1;
β:=σ;γ:=τ

(
[a]α,β:=σ ([donkey]α:=σ)

) )
(
[farmer]α:=σ;β:=1;γ:=v

) )
(
[feeds]α,β:=1×e×1×τ ;γ:=v ([it]α:=e;β:=1×e×1×τ ;γ:=v))

⇒β λi
1.λfe×1×τ�v.∀ae×1×τ .

(
farmer([a]0) ∧

(
donkey([[[[a]1]1]0]0)

∧ own([a]0, [[[[a]1]1]0]0, [[[a]1]1]1)
))

→ feed([a]0, g
1×τ�e(i, a), f(a))

Where σ := 1×e×1 and τ := (e×1)×v, as for the rest of the discussion of (25).
This time, the resolution function that we want is λb.[[[[[b]1]1]1]0]0.11 If g is

resolved in this way then we derive the interpretation shown in (26).

λi1.λf (e×1)×τ�v.∀a(e×1)×τ .
(
farmer([a]0) ∧

(
donkey([[[[a]1]1]0]0)

∧ own([a]0, [[[[a]1]1]0]0, [[[a]1]1]1)
))

→ feed([a]0, λb([[[[[b]1]1]1]0]0)(i, a), f(a))

(26)

λi1.λf (e×1)×τ�v.∀a(e×1)×τ .
(
farmer([a]0) ∧

(
donkey([[[[a]1]1]0]0)

∧ own([a]0, [[[[a]1]1]0]0, [[[a]1]1]1)
))

→ feed([a]0, [[[[a]1]1]0]0, f(a))

⇒β

If we apply (26) to the null context and then apply existential closure, we
get (27).

∃f (e×1)×τ�v.∀a(e×1)×τ .
(
farmer([a]0) ∧

(
donkey([[[[a]1]1]0]0)

∧ own([a]0, [a]1,1,0,0, [[[a]1]1]1)
))

→ feed([a]0, [[[[a]1]1]0]0, f(a))

(27)

∀xe.∀ye.∀ev.(farmer(x) ∧ (donkey(y) ∧ own(x, y, e)))→ ∃e1v.feed(x, y, e1)≡

The interpretation just derived is equivalent to that derived for (28), as shown
below.
11 As stated, λb.[[b]1]0 is also a possible resolution function, which would have it varying

with farmers rather than donkeys, which is obviously not a possible reading of (25).
This reading could be ruled out by tweaking the lexical entry for every, but only at
the cost of ruling out interpretations that we do want when we have an embedded
clause. The mechanism for ruling out violations of ‘Principle B’ must come from
somewhere else.



(28) If a farmer owns a donkey, he feeds it.

7→ [if]

α:=1;
β:=τ ;
γ:=v

(
[a]

α,β:=1;
γ:=(e×1)×v

(
[farmer]α:=1

)
[owns]

α:=σ×e×1;
β:=σ;
γ:=(e×1)×v

[a]

α:=1;
β:=σ;
γ:=v ([donkey]α:=σ)


(
[he]α:=1×τ ([feeds]α,β:=1×τ ;γ:=v ([it]α:=e;β:=1×τ ;γ:=v)))

⇒β λi
1.λfτ�v.∀xτ .

(
farmer([[x]0]0) ∧ (donkey([[[x]1]0]0)

∧ own([[x]0]0, [[[x]1]0]0, [[x]1]1))
)

→ feed(g1×τ�e(i, x), h1×τ�e(i, x), f(x))

Where σ := 1×e×1 and τ := (e×1)×(e×1)×v, as for the rest of the discussion
of (28).

The resolution functions that give us the desired outcome are g := λb.[[[b]1]0]0
and h := λb.[[[[b]1]1]0]0. With these in place, and with (28) then applied to the
null context and existentially closed, we derive the interpretation shown in (29).

∃fτ�v.∀xτ .
(
farmer([[x]0]0) ∧ (donkey([[[x]1]0]0)

∧ own([[x]0]0, [[[x]1]0]0, [[x]1]1))
)

→ feed([[x]0]0, [[[x]1]0]0, f(x))

(29)

∀xe.∀ye.∀ev.
(
farmer(x) ∧ (donkey(y) ∧ own(x, y, e))

)
→ ∃e1v.feed(x, y, e1)≡

The interpretations derived for (25) and (28) are thus equivalent, and in both
cases it is the ‘strong’ interpretation that is derived; namely, that every farmer
feeds every donkey that he owns. Weak readings will be discussed in the next
section.

Finally, note how the use of eventualities as the equivalent of proof objects in
this account, plus the polymorphism in the translation of it, allow for the most
salient interpretation of (30) to be accounted for.

(30) If a farmer beats a donkey, he regrets it.

If we proceed as for (28) but with [regrets]([it]α:=v) instead of [feeds]([it]α:=e)
and with appropriate resolution of the free variables introduced by the pronouns,
the interpretation derived is as shown in (31) (where τ := (e×1)×(e×1)×v).

∃fτ�v.∀xτ .
(
farmer([[x]0]0) ∧ (donkey([[[x]1]0]0)

∧ beat([[x]0]0, [[[x]1]0]0, [[x]1]1))
)

→ regret([[x]0]0, [[x]1]1, f(x))

(31)

∀xe.∀ye.∀ev.
(
farmer(x) ∧ (donkey(y) ∧ beat(x, y, e))

)
→ ∃dv.regret(x, e, d)≡



3 Plurals, Generalized Quantifiers and Weak Readings

The lexical entries given in Figure 1 do not cover plurals or determiners that
resist analysis in first-order terms, like most. Some lexical entries illustrating the
general approach to be taken in extending to these cases are shown in Figure 2.

two 7→ λP.λV.λiβ .λX. |λxe.∃aα.∃dγ .X((x, a), d)| = 2

∧ ∀be×α.∀cγ .X(b, c)→
(
P (b)(i) ∧ V ([b]0)(i, b)(c)

)
fewer than two 7→

λP.λV.λiβ .λX. |λxe.∃aα.∃dγ .X((x, a), d)| < 2

∧ ∀be×α
(
∀cγ .X(b, c)→

(
P (b)(i) ∧ V ([b]0)(i, b)(c)

))
∧ ¬∃Y.

(
∀m(e×α)×γ .X(m)→ Y (m)

∧ ¬∀m(e×α)×γ .Y (m)→ X(m)
)

∧ ∀be×α.∀cγ .Y (b, c)→
(
P (b)(i) ∧ V ([b]0)(i, b)(c)

)
mostweak 7→ λP.λV.λiβ .λX. |λxe.∃aα.∃dγ .X((x, a), d)| > |λx

e.∃aα.P (x, a)(i)|
2

∧ ∀be×α.∀cγ .X(b, c)→
(
P (b)(i) ∧ V ([b]0)(i, b)(c)

)
moststrong 7→ λP.λV.λiβ .λX. |λxe.∃aα.∃dγ .X((x, a), d)| > |λx

e.∃aα.P (x, a)(i)|
2

∧ ∀ye
(
∀mα.∀nβ .

(
P (y,m)(n) ∧ ∃oα.∃rγ .X((y, o), r)

)
→ ∃sγ .X((y,m), s)

)
∧ ∀be×α.∀cγ .X(b, c)→

(
P (b)(i) ∧ V ([b]0)(i, b)(c)

)
where P : e×α�β�t, V : e�β×e×α�γ�t and X,Y : (e×α)×γ�t

them 7→ λV α�β�γ�t.λiβ .λcγ .∀aα.Gβ�α�t(i)→ V (a)(i)(c)

where G stands for an arbitrarily-chosen free variable

Fig. 2. More (schematic) lexical entries

The general strategy for these cases will be to set up ‘witness sets’ in the
sense of [1], or, more precisely, higher-order functions from which witness sets
can be recovered. For example, the interpretation of two donkeys VP will be (a
function from input contexts to) a higher-order function from which sets of two
donkeys can be recovered. Of course, the nature of witness sets for quantifiers
that aren’t monotone-increasing means that the lexical entries for those will have
to be more complex so as to enforce some version of what [20] calls the ‘maximal
participant condition’; this is evidenced by the lexical entry shown for fewer
than two, which requires that the witness set not be a proper subset of any other
witness set also in the extension of the VP.



A further point worth noting is that, throughout this section, the denotation
for nouns and verbs with plural agreement is taken to be the same as that for
those with singular agreement. Relatedly, only distributive readings of plurals
are derived. Considering the distributive/collective distinction at the same time
as everything else would take us too far afield.

Let us consider another simple example, in (32).

(32) Two donkeys bray. Giles owns them.

two donkeys bray 7→ [two]α,β:=1;γ:=v
(
[donkey]α:=1

) (
[bray]α:=1

)
⇒β λi

1.λX(e×1)×v�t.
∣∣λxe.∃a1.∃dv.X((x, a), d)

∣∣ = 2

∧ ∀be×1.∀cv.X(b, c)→
(
donkey([b]0) ∧ bray([b]0, c)

)
Giles owns them 7→
[Giles]α:=1×τ ;β:=v ([owns]α,β:=1×τ ;γ:=v ([them]α:=e;β:=1×τ ;γ:=v))
⇒β λi

1×τ.λae×v.∀ye
(
G1×τ�e�t(i)(y)→

(
own([a]0, y, [a]1)

)
∧ giles = [a]0

)
∴ (32) 7→ [and]α:=1;β:=τ ;γ:=e×v ([two donkeys bray]) ([Giles owns them])

⇒β λi
1.λaτ×e×v.

∣∣λxe.∃y1.∃dv.[a]0((x, y), d)
∣∣ = 2

∧ ∀be×1
(
∀cv.[a]0(b, c)→

(
donkey([b]0) ∧ bray([b]0, c)

))
∧ ∀ye.G1×τ�e�t(i, [a]0)(y)→

(
own([[a]1]0, y, [[a]1]1)

∧ [[a]1]0 = giles
)

Where τ := (e×1)×v�t.

Since we are now dealing with plural (set) entities, the definition of natural
resolution functions given in (20) is inadequate. We need to extend the definition
so that we can extract a set of entities from a set of tuples. Clauses d. and e. in
(33), an extension of (20), achieve this.

(33) For any types α, β and γ:

a. λbα.b is a natural resolution function (NRF).
b. λbα×β .[b]0 is an NRF.
c. λbα×β .[b]1 is an NRF.
d. λbα×β�t.λY α.∃Zβ .b(Y,Z) is an NRF.
e. λbα×β�t.λY α.∃Zβ .b(Z, Y ) is an NRF.
f. For any terms F : β�γ and G : α�β, λbα.F (G(b)) is an NRF if F

and G are NRFs.

(33) means that λb1×((e×1)×v�t).λxe.∃n1.∃ev.[b]1((x, n), e) is a natural reso-
lution function. With G in (33) instantiated to this function, the interpretation



proceeds as follows.

λi1.λaτ×e×v.
∣∣λxe.∃y1.∃dv.[a]0((x, y), d)

∣∣ = 2

∧ ∀be×1
(
∀cv.[a]0(b, c)→

(
donkey([b]0) ∧ bray([b]0, c)

))
∧ ∀ye.∃n1

(
∃ev.[(i, [a]0)]1((y, n), e)

)
→
(
own([[a]1]0, y, [[a]1]1) ∧ [[a]1]0 = giles

)
(34)

λi1.λaτ×e×v.
∣∣λxe.∃y1.∃dv.[a]0((x, y), d)

∣∣ = 2

∧ ∀be×1
(
∀cv.[a]0(b, c)→

(
donkey([b]0) ∧ bray([b]0, c)

))
∧ ∀ye.∃n1

(
∃ev.[a]0((y, n), e)

)
→
(
own([[a]1]0, y, [[a]1]1) ∧ [[a]1]0 = giles

)
⇒β

Where τ := (e×1)×v�t.
Applied to the empty context and then existentially closed, the interpretation

comes out as shown in (35).

∃a((e×1)×v�t)×e×v.
∣∣λxe.∃y1.∃dv.[a]0((x, y), d)

∣∣ = 2

∧ ∀be×1
(
∀cv.[a]0(b, c)→

(
donkey([b]0) ∧ bray([b]0, c)

))
∧ ∀ye.∃n1

(
∃ev.[a]0((y, n), e)

)
→
(
own([[a]1]0, y, [[a]1]1) ∧ [[a]1]0 = giles

)
(35)

∃Re×v�t.∃ze.∃ev. |λxe.∃dv.R(x, d)| = 2

∧ ∀ve
(
∀cv.R(v, c)→ (donkey(v) ∧ bray(v, c))

)
∧ ∀ye.∃bv(R(y, b))→ (own(z, y, e) ∧ z = giles)

≡

We are now in a position to look at a proportional donkey sentence, (36),
under both strong and weak readings.

(36) Most farmers who own a donkey feed it.

With appropriate type instantiations, the weak reading of the sentence is derived
as shown below.

λi1.λX(e×τ)×v�t. |λxe.∃aτ .∃dv.X((x, a), d)| >∣∣∣∣∣λxe.∃aτ .farmer(x) ∧
(
donkey([[[a]1]0]0)

∧ own(x, [[[a]1]0]0, [[a]1]1)
)∣∣∣∣∣

2

∧ ∀be×τ .∀cv.X(b, c)→
((
farmer([b]0) ∧

(
donkey([[[[b]1]1]0]0)

∧ own([b]0, [[[[b]1]1]0]0, [[[b]1]1]1)
))

∧ feed([b]0, g
1×e×τ�e(i, b), c)

)
Where τ := 1×(e×1)×v, as for the rest of the discussion of (36).



In this case the resolution function that we want is λb1×e×τ .[[[[[b]1]1]1]0]0.
With this resolution, followed by application to the empty context and existential
closure, we end up with the interpretation shown in (37).

∃X(e×τ)×v�t. |λxe.∃aτ .∃dv.X((x, a), d)| >∣∣∣∣∣λxe.∃aτ .farmer(x) ∧
(
donkey([[[a]1]0]0)

∧ own(x, [[[a]1]0]0, [[a]1]1)
)∣∣∣∣∣

2

∧ ∀be×τ .∀cv.X(b, c)→
((
farmer([b]0) ∧

(
donkey([[[[b]1]1]0]0)

∧ own([b]0, [[[[b]1]1]0]0, [[[b]1]1]1)
))

∧ feed([b]0, [[[[b]1]1]0]0, c)
)

(37)

∃Y e×e×v×v�t. |λxe.∃ye.∃dv.∃ev.Y (x, y, d, e)| >∣∣λxe.∃ye.∃ev.farmer(x) ∧
(
donkey(y) ∧ own(x, y, e)

)∣∣
2

∧ ∀xe.∀ye.∀dv.∀ev.Y (x, y, d, e)

→
((
farmer(x) ∧

(
donkey(y)

∧ own(x, y, d)
))
∧ feed(x, y, e)

)

≡

Suppressing mention of eventualities for the sake of simplicity, (37) expresses
the existence of a set Y of farmer-donkey pairs such that the number of farmers
in Y is greater than half the number of farmers who own a donkey; and for every
farmer-donkey pair in Y , the farmer owns the donkey and feeds the donkey. It
does not require that every farmer in Y feed every donkey that he owns. For
that, we need the lexical entry given in Figure 2 for the strong version of most.
With this in place, and the same resolution for the pronoun, we end up with the
interpretation shown in (38).

∃X(e×τ)×v�t. |λxe.∃aτ .∃dv.X((x, a), d)| >∣∣∣∣∣λxe.∃aτ .farmer(x) ∧
(
donkey([[[a]1]0]0)

∧ own(x, [[[a]1]0]0, [[a]1]1)
)∣∣∣∣∣

2

∧ ∀ye
(
∀mτ .∀n1.

(
farmer(y) ∧ donkey([[[m]1]0]0)

∧ own(y, [[[m]1]0]0, [[m]1]1)

∧ ∃oτ .∃rv.X((y, o), r)
)
→ ∃sv.X((y,m), s)

)
∧ ∀be×τ .∀cv.X(b, c)→

((
farmer([b]0) ∧

(
donkey([[[[b]1]1]0]0)

∧ own([b]0, [[[[b]1]1]0]0, [[[b]1]1]1)
))

∧ feed([b]0, [[[[b]1]1]0]0, c)
)

(38)



∃Y e×e×v×v�t. |λxe.∃ye.∃dv.∃ev.Y (x, y, d, e)| >∣∣λxe.∃ye.∃ev.farmer(x) ∧
(
donkey(y) ∧ own(x, y, e)

)∣∣
2

∧ ∀ye
(
∀ze.∀dv.

(
farmer(y) ∧ donkey(z) ∧ own(y, z, d)

∧ ∃ve.∃cv.∃rv.Y (y, v, c, r)
)

→ ∃sv.Y (y, z, d, s)
)

∧ ∀xe.∀ye.∀dv.∀ev.Y (x, y, d, e)

→
((
farmer(x) ∧

(
donkey(y)

∧ own(x, y, d)
))
∧ feed(x, y, e)

)

≡

In addition to what is expressed in (37), (38) requires that for every farmer-
donkey pair in Y , if the farmer owns any other donkey then that farmer-donkey
pair is in Y as well. This captures the strong reading.

4 Discussion and Conclusion

I have presented a framework for capturing many anaphoric relationships which
is inspired by the concepts behind TTS analyses of these phenomena, but without
actually using an enriched type theory like ITT. Nevertheless, the type theory
used is not exactly the simple theory of types either, as the account crucially
relies on type polymorphism, either at the object-level or at the meta-level.
This requirement, however, appears to be at least partly independent of the
TTS/MTS distinction, since type polymorphism is also required in TTS analyses
once the account is extended to include generalized quantifiers, as in [22].

On the MTS side, there is an obvious similarity between the account pre-
sented in this paper and accounts that make use of lists or stacks to keep track of
discourse referents, for example [3], [4], [9] and [17]. That in itself suggests a con-
nection between MTS and TTS approaches to anaphora, particularly between
lists/stacks of discourse referents and (Martin-Löf) proof objects, that should be
further explored.
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