
On Generalized Noun Phrases

R. Zuber

CNRS, Laboratoire de Linguistique Formelle, Paris, France
Richard.Zuber@linguist.univ-paris-diderot.fr

Abstract. Generalized noun phrases are expressions which play the role
of verbal arguments in the same way as ordinary NPs. However proper
generalized NPs cannot easily occur in all argumental positions of the
verb. Two types of generalized NPs are distinguished and semantically
characterized and various properties of functions they denote are studied.
These properties indicate similarities and differences between ordinary
NPs and generalized NPs and show that generalized NPs essentially ex-
tend the expressive power of natural languages.

1 Introduction

Syntactically, generalized noun phrases (GNPs) belong to expressions which typ-
ically fulfill the function of argument of the main clause argument like (ordinary)
noun phrases (ONPs). However, genuine GNPs are expressions which, in con-
trast to ONPs, cannot occur in all argumental positions of the verb; in particular
they cannot occur in the subject position. Typical examples of (proper) GNPs
are anaphoric NPs (ANPs) whose positions in the sentence are determined by
the position of their antecedents. The classical example of an ANP belonging to
the sub-class of reflexives is the pronoun himself and the classical example of
the ANP belonging to the sub-class of reciprocals is the pronoun each other.

In section 3 we discuss in some details the structure of GNPs and of ANPs
in particular. At present it suffices to indicate that we will count as proper
GNPs many complex expressions containing himself or each other. Such com-
plex examples can in particular be Boolean compounds of anaphoric pronouns
with anaphoric or non-anaphoric noun phrases. For instance himself but not
most students is such a reflexive and each other and ten philosophers is such a
reciprocal.

There are also complex reflexives and reciprocals which are GNPs which are
not Boolean compounds. One can obtain such complex ANPs by the application
of anaphoric determiners (ADets) to a common noun (CN) (cf. Zuber 2010b).
Thus we have reflexive (anaphoric) determiners (RefDets) like for instance no,...
except herself or most,..., including Socrates and himself which can apply to a
CN and give complex reflexives like no teacher, except herself or most philoso-
phers, including Socrates and himself. Similarly reciprocal determiners (RecDets)
like no... except each other, most..., including each other which can apply to a
CN and give complex reflexives and reciprocals like every logician except each
other (as in Dan and Leo admire every logician except each other).

Another important class of GNPs, distinct from ANPs representing nominal
anaphors, is formed by comparative generalised NPs, CNPs. It contains two sub-
classes. First, to CNPs belong what Keenan 2016 calls predicate anaphors, that
is expressions like more linguists than Dan or the greatest number of teachers
(as found in Leo met more linguists than Dan/the geatest number of teachers).
Clearly such expressions can be used, at least ”at the surface” as verbal argu-
ments for some verbal positions.

The second sub-class of CNPs is formed from what we will call, for reasons
to be explained below, higher order comparative GNPs (HCNPs). These are
expressions like the same books or very different articles and the oldest book in
the library.

We will also discuss HCNPs formed with determiner like the same number
of. They give rise to the following HCNPs: the same number of students, almost
the same number of articles etc.

The following examples show that the indicated reflexives, reciprocals and
HCNPs are indeed genuine GNPs:

(1) *He(self) admires Dan.

(2) *Each other admires Dan and Leo.

(3) *Most philosophers, including Socrates and himself admire Dan.

(4) *Every logician except each other admire Dan and Leo.

(5) *More students than Dan knows Leo.

(6) *The same articles and the oldest book in the library read Dan and Leo

Even though many HCNPs can occur in the subject position (for instance
the same CN as in the same actors played three characters in the movie) we will
consider them, for formal reason to be given below, as genuine GNPs.

The purpose of this paper is to characterize in a preliminary way denotations
of GNPs in their opposition to ONPs. We will be mainly interested in formal
properties of functions denoted by GNPs. In the next section we recall some
basic notions from the generalized quantifier theory and, more importantly, we
show how they can be extended so that they apply to denotations of GNPs,
more specifically to CNPs, ANPs and HCNPs. In section 3 we indicate various
syntactic forms which GNPs can take. In section 4 we give semantics of some
basic GNPs and indicate properties of functions representing this semantics.

2 Formal preliminaries

We will consider binary relations and functions over a universe E, assumed to be
finite throughout this paper. D(R) denotes the domain of R.The relation I is the
identity relation: I = {〈x, y〉 : x = y}. If R is a binary relation and X a set, then
R/X = R ∩ (X ×X).The binary relation RS is the greatest symmetric relation
included in R, that is RS = R ∩ R−1 and RS− = RS ∩ I ′. If R is an irreflexive
symmetric relation (i.e. R ∩ R−1 ∩ I = ∅) then Π(R) is the least fine partition

of R such that every one of its blocks is of the form (A×A) ∩ I ′. A partition is
trivial iff it contains only one block. Observe that if R is an irreflexive symmetric
relation and Π(R) is not trivial than every block of Π(R) contains at least two
elements.

If a function takes only a binary relation as argument, its type is noted
〈2 : τ〉, where τ is the type of the output; if a function takes a set and a
binary relation as arguments, its type is noted 〈1, 2 : τ〉. If τ = 1 then the
output of the function is a set of individuals and thus its type is 〈2 : 1〉 or
〈1, 2 : 1〉. The function SELF , denoted by the reflexive himself and defined as
SELF (R) = {x : 〈x, x〉 ∈ R}, is of type 〈2 : 1〉 and the function denoted by the
anaphoric determiner every...but himself is of type 〈1, 2 : 1〉. We will consider
here also the case when τ corresponds to a set of type 〈1〉 quantifiers and thus
τ equals, in Montagovian notation, 〈〈〈e, t〉t〉t〉. The type of such functions will
be noted either 〈2 : 〈1〉〉 - functions from binary relations to sets of type 〈1〉
quantifiers or 〈1, 2 : 〈1〉〉 - functions from sets and binary relations to sets of
type 〈1〉 quantifiers.

Basic type 〈1〉 quantifiers are functions from sets to truth-values. Functions
from sets to type 〈1〉 quantifiers are type 〈1, 1〉 quantifiers which are denoted
by (nominal) unary determiners. Basic type 〈1〉 quantifiers are denotations of
subject NPs. However, NPs can also occur in the direct object position and in
this case their denotations do not take sets (denotations of VPs) as arguments
but denotations of TVPs (relations) as arguments (Keenan 2016). To account
for this eventuality the domain of application of basic type 〈1〉 quantifiers is
extended in the way that it contains in addition the set of binary relations. When
a quantifier Q acts as a ”direct object” we get its accusative case extension Qacc
(Keenan and Westerst̊ahl 1997):

Definition 1. For each type 〈1〉 quantifier Q, QaccR = {a : Q(aR) = 1}, where
aR = {y : 〈a, y〉 ∈ R}.

Formally accusative extensions of type 〈1〉 quantifiers are of the same ex-
pressive power as type type 〈1〉 quantifiers because the algebra of type type 〈1〉
quantifiers is isomorphic to the algebra of the accusative extensions of type 〈1〉
quantifiers.

Various applications of the notion of the accusative extension of a quantifier
are given in Keenan 2016 where in particular it is shown that the accusative
extension allows us to avoid recourse to LF movement when interpreting NPs
in the object position.

A type 〈1〉 quantifier Q is positive, Q ∈ POS, iff ∅ /∈ Q; Q is natural iff either
Q ∈ POS and E ∈ Q or Q /∈ POS and E /∈ Q; Q is plural, Q ∈ PL, iff if X ∈ Q
then |X| ≥ 2. QA is the atomic quantifier true of just A.

A special class of type 〈1〉 quantifiers is formed by individuals: Ia is an in-
dividual (generated by a ∈ E) iff Ia = {X : a ∈ X}. They are denotations
of proper names. More generally, Ft(A), the (principal) filter generated by the
set A, is defined as Ft(A) = {X : X ⊆ E ∧ A ⊆ X}. NPs of the form Every
CN denote principal filters generated by the denotation of CN. Meets of two
principal filters are principal filters: Ft(A) ∩ Ft(B) = Ft(A ∪B).

We will use also the property of living on (cf. Barwise and Coper 1981).
The basic type 〈1〉 quantifier lives on a set A (where A ⊆ E) iff for all X ⊆ E,
Q(X) = Q(X∩A). We extend the notion of living on to the type 〈2 : 1〉 functions.
Thus a type 〈2 : 1〉 function F lives on the relation S iff F (R) = F (R ∩ S) for
any binary relation R. It is easy to see that Q lives on A iff Qacc lives on E×A.

If E is finite then there is always a smallest set on which a quantifier Q lives.
If A is a set on which Q lives we will write Li(Q,A) and the smallest set on
which Q lives will be noted SLi(Q). A related notion is the notion of a witness
set of the quantifier Q, relative to the set A on which Q lives:

Definition 2. W ∈WtQ(A) iff W ∈ Q ∧W ⊆ A ∧ Li(Q,A).

One can see that any principal filter lives on the set by which it is generated,
and, moreover, this set is its witness set. Atomic quantifiers live on the universe
E only.

Accusative extensions of type 〈1〉 quantifiers are specific type 〈2 : 1〉 func-
tions. They satisfy the invariance condition called accusative extension condition
EC (Keenan and Westerst̊ahl 1997):

Definition 3. A type 〈2 : 1〉 function F satisfies EC iff for R and S binary
relations, and a, b ∈ E, if aR = bS then a ∈ F (R) iff b ∈ F (S).

Observe that if F satisfies EC then for all X ⊆ E either F (E × X) = ∅
or F (E × X) = E. Given that SELF (E × A) = A the function SELF does
not satisfy EC. The function SELF satisfies the following weaker predicate
invariance condition PI (Keenan 2007):

Definition 4. A type 〈2 : 1〉 function F is predicate invariant (PI) iff for R
and S binary relations, and a ∈ E, if aR = aS then a ∈ F (R) iff a ∈ F (S).

This condition is also satisfied for instance by the function ONLY -SELF
defined as follows: ONLY -SELF (R) = {x : xR = {x}}. Given that ONLY -
SELF (E × {a}) = {a}, the function ONLY -SELF does not satisfy EC.

The following proposition indicates another way to define PI (Zuber 2016):

Proposition 1. A type 〈2 : 1〉 function F is predicate invariant iff for any
x ∈ E and any binary relation R, x ∈ F (R) iff x ∈ F ({x} × xR).

The PI condition is weaker than EC. The function MORES,d which inter-
prets the CNP more students than Dan and which is defined as MORES,d(R) =
{x : |xR| > |dR|} satisfies another weakening of EC, the so-called argument
invariance condition AI (Keenan and Westerst̊ahl 1997) :

Definition 5. A type 〈2 : 1〉 function F is argument invariant (AI) iff for any
binary relation R and a, b ∈ E, if aR = bR then a ∈ F (R) iff b ∈ F (R).

The invariant conditions EC, PI and AI concern type 〈2 : 1〉 functions,
considered here as being denoted by full GNPs. As an illustration we provide
a similar definition for type 〈1, 2 : 1〉 functions denoted by ordinary (nominal)
determiners. Thus:

Definition 6. A type 〈1, 2 : 1〉 function F satisfies D1EC iff for R and S
binary relations, X ⊆ E and a, b ∈ E, if aR ∩X = bS ∩X then a ∈ F (X,R) iff
b ∈ F (X,S).

Observe that if F (X,R) satisfies D1EC then for allX,A ⊆ E either F (X,E×
A) = ∅ or F (X,E × A) = E. Denotations of ordinary determiners occurring in
NPs which take direct object position satisfy D1EC. More precisely, if D is
a type 〈1, 1〉 conservative quantifier, then the function F (X,R) = D(X)acc(R)
satisfies D1EC: in this case F (X,R) = {y : D(X)(yR∩X) = 1} and F (X,S) =
{y : D(X)(yS∩X) = 1}. So if aR∩X = bS∩X then a ∈ F (X,R) iff b ∈ F (X,S).

The above invariance principles concern type 〈2 : 1〉 and type 〈1, 2 : 1〉
functions. We need to present similar ”higher order” invariance principles for
type 〈2 : 〈1〉〉 functions, that is functions having as output a set of type 〈1〉
quantifiers.

One can distinguish various kinds of type 〈2 : 〈1〉〉 functions. Observe first
that any type 〈2 : 1〉 function whose output is denoted by a VP can be lifted to
a type 〈2 : 〈1〉〉 function. The accusative extension of a type 〈1〉 quantifier Q can
be lifted to type 〈2 : 〈1〉〉 function in the way indicated in (7). Such functions
will be called accusative lifts. More generally, if F is a type 〈2 : 1〉 function, its
lift FL, a type 〈2 : 〈1〉〉 function, is defined in (8):

(7) QLacc(R) = {Z : Z(Qacc(R)) = 1}.
(8) FL(R) = {Z : Z(F (R)) = 1}.

The variable Z above runs over the set of type 〈1〉 quantifiers.
For type 〈2 : 〈1〉〉 functions which are lifts of type 〈2 : 1〉 functions we have:

Proposition 2. If a type 〈2 : 〈1〉〉 function F is a lift of a type 〈2 : 1〉 function
then for any type 〈1〉 quantifiers Q1 and Q2 and any binary relation R, if Q1 ∈
F (R) and Q2 ∈ F (R) then (Q1 ∧Q2) ∈ F (R)

For type 〈2 : 〈1〉〉 functions which are accusative lifts we have:

Proposition 3. Let F be a type 〈2 : 〈1〉〉 function which is an accusative lift.
Then for any A,B ⊆ E, any binary relation R, Ft(A) ∈ F (R) and Ft(B) ∈
F (R) iff Ft(A ∪B) ∈ F (R).

Accusative lifts satisfy the following higher order extension condition HEC
(Zuber 2014):

Definition 7. A type 〈2 : 〈1〉〉 function F satisfies HEC (higher order extension
condition) iff for any natural type 〈1〉 quantifiers Q1 and Q2 with the same
polarity, any A,B ⊆ E, any binary relations R,S, if Li(Q1, A), Li(Q2, B) and
∀a∈A∀b∈B(aR = bS) then Q1 ∈ F (R) iff Q2 ∈ F (S).

Functions satisfying HEC have the following property::

Proposition 4. Let F satisfies HEC and let R = E ×C, for C ⊆ E arbitrary.
Then for any X ⊆ E either Ft(X) ∈ F (R) or for any X, Ft(X) /∈ F (R)

Thus a function satisfying HEC condition and whose argument is the cross-
product relation of the form E × A, has in its output either all principal filters
or no principal filter. We will see that the function denoted by the ANP each
other does not satisfy HEC.

It follows from Proposition 4 that lifts of genuine predicate invariant functions
do not satisfy HEC. They satisfy the following weaker condition (Zuber 2014):

Definition 8. A type 〈2 : 〈1〉〉 function F satisfies HPI (higher order predicate
invariance) iff for type 〈1〉 quantifier Q, any A ⊆ E, any binary relations R,S,
if Li(Q,A) and ∀a∈A(aR = aS) then Q ∈ F (R) iff Q ∈ F (S).

The higher order property corresponding to AI is the higher order argument
invariance:

Definition 9. A type 〈2 : 〈1〉〉 function F satisfies HAI (higher order argument
invariance) iff for any natural type 〈1〉 quantifiers Q1 and Q2 with the same
polarity, any A,B ⊆ E, any binary relation R, if SLi(Q1, A), SLi(Q2, B) and
∀a∈A∀b∈B(aR = aS) then Q1 ∈ F (R) iff Q2 ∈ F (R).

Higher order invariance conditions are generalizations of ”simple” invariance
conditions because it can be shown (cf. Zuber 2014) that lifts of functions satis-
fying simple invariance condition satisfy higher order invariance conditions. Thus
the accusative lift of a type 〈1〉 quantifier satisfies HEC, the lift a a function
satisfying PI satisfies HPI and the lift of a function satisfying AI satisfies HAI.

3 Structure of generalized noun phrases

In this section we indicate some structural and syntactic differences and simi-
larities between ONPs and GNPs by comparing their respective structures. The
remarks which follow are not intended, however, to characterise syntactically the
class of proper GNPs. Moreover, we have to keep in mind that we consider that
the class of GNPs is strictly included in the class of NPs and thus that there
are genuine, or proper, GNPs which are not ONPs. In the next section we will
characterise semantically two classes of proper GNPs: simple and higher order
GNPs. Roughly speaking, simple GNPs are GNPs related to reflexives or simple
comparatives (or predicate anaphors) and higher order GNPs are those which
are related to reciprocals or HCGNPs such as the same CN.

The first thing to notice is that among genuine GNPs there are no elements
corresponding to proper names, which, obviously are OMPs. Thus there are no
morphologically simple non-pronominal genuine GNPs. We observe that morpho-
logically simple or ”almost simple” genuine GNPs have a pronominal character.
This is the case with the reflexive himself or reciprocal each other. Interestingly
”ordinary” pronouns are ONPs.

One of very productive ways of forming complex ONPs is by the application
of determiners to CNs. Thus there is a natural class of ONPs which are of the
form Det CN where Det is an unary determiner that is a functional expression

which when applied to one CN gives an NP. Such ”ordinary” determiners have
been extensively studied, various sub-classes of them have been distinguished and
formal properties of their denotations, that is type 〈1, 1〉 quantifiers, have been
established. It is generally admitted that unary determiners denote conservative
type 〈1, 1〉 functions and conservative functions have formally important sub-
classes of intersective and co-intersective functions. For instance the determiner
most denotes a conservative function which is conservative but neither intersec-
tive nor co-intersective, the numerals are determiners which denote intersective
functions and determiners like every or every...but ten denote co-intersective
functions.

Now, important point is that there is also a class of genuine GNPs which are
obtained by the application of a (generalised) determiner to a CN, that is GNPs
of the form GDet CN, where GDet, a generalized determiner, is a functional
expression which when applied to a CN gives a genuine GNP. GDets in their turn
can be divided into anaphoric GDets (ADets) and comparative GDets (CGDets).
Finally, among ADets we have RefDets, reflexive determiners and RecDets, that
is reciprocal determiners. To see these differrent classes of GDets consider the
following examples:

(9) Dan hates every linguist except himself

(10) Dan knows more linguists than Leo

(11) Leo and Dan admire no linguist except each other

(12) Leo and Dan read the same books

In (9) the determiner every... except himself is a RefDet. Similarly no...except
himself and Dan and most..., including himself are RefDets. In (10) we have a
CDet more... than Leo. In (11) the expression no... except each other is a RecDet
as are for instance expressions like every... except each other and Dan or most,
including each other. In (12) we have a CDet the same. Other examples of such
determiners are represented by different, very different, quite different, similar,
very similar, almost the same. etc.

Another very productive way of forming NP is by the use of Boolean connec-
tors. For instance the following NPs are such Boolean compounds Dan and most
students, ten logicians and some linguists, five students and no teacher except
Dan. As the following examples show there are also genuine GNPs which are
Boolean compounds:

(13) Dan admires himself and most philosophers

(14) Leo and Dan admire each other but not themselves

(15) Leo and Dan read five articles and the same books

(16) Leo and Dan read the same articles and different books

(17) Leo and Dan admire each other but not themselves and Lea

(18) Dan and Leo admire each other, themselves and the same linguists

Observe that in the above examples GNPs belonging to various subclasses
are conjoined. This does not mean that all GNPs can be freely conjoined in the
same way as ONPs cannot always be freely conjoined.

The next similarity between ONPs and genuine GNPs I mention briefly con-
cerns the possibility of their modification by the so-called categorially polyvalent
modifiers, CPM, that is modifiers which can apply to expressions of different
categories. CPM include expressions like only, also, even, at least, etc. These
modifiers can modify expressions of various categories and in particular they
can apply to ONPs since we have: even Dan, only Dan and Bill, also some stu-
dents, at least ten teachers, etc. As the following examples show, proper GNPs
can also be modified by the CPM:

(19) Leo admires only/even/at/ least himself.

(20) Leo and Dan admire at least/at most/only/even each other.

(21) They read even/at least the same books.

Finally, ONPs and proper GNPs can also play the role of arguments of non-
verbal predicatives, that is complex expressions which are not modifiers and do
not contain a verb but which take GNPs as an argument. A natural class of
such predicatives is formed eiher from transitive CNs (like friend of or young
grand-parent of) or from transitive adjectives (like jealous of). Thus we have
the following predicatives in which ONPs occur as arguments: grand-parents of
ten children, friends of some gangsters. Proper GNPs can also occur in such
contexts since we have: grand-parents of the same students, fond of the same
students/themselves or jealous of each other.

Proper GNPs can also occur in relative clauses and other embedding con-
structions. In this case, however, the complex constructions containing such em-
bedded GNPs can easily occur in the subject position: the expressions persons
with the same taste/who admire each other and to hate each other can be used
as subject NPs. In addition both types of noun phrases can occur as arguments
in prepositional phrases since we have leave with each other or talk with the same
persons.

A general form of sentences in which ANPs, CNPs and HCNPs occur and
which we will consider here, is given in (22):

(22) NP TV P GNP

TV P is a transitive verb phrase which denotes a binary relation and GNP
is either himself or each other or has the form RefDet(CN), RecDet(CN), the
same CN or is a Boolean combination of all such cases.

4 Formal properties of generalized noun phrases

In this section we analyze properties of full GNPs and not of their specific parts
such as reflexive determiners, comparative determiners or reciprocal determiners.
Properties of RefDets are studied in Zuber 2010b and comparative determiners

- in Zuber 2011. A proposal to treat some higher order comparatives is given in
Zuber 2017b.

The fact that nominal anaphors have various properties which distinguish
them from ONPs is well known. For instance Geach 1968 indicates various pec-
ularities of the pronoun himself and suggest that some of them have been dis-
cussed by medieval philosophers. I will illustrate first informally some differences
between ONPs and various simple proper GNPs, using in particular various ob-
servations from Keenan 2007, Keenan 2016 and Zuber 2011.

When an ONP (in the subject position) denotes a type 〈1〉 quantifier Q then
when it occurs in the object position it denotes the accusative extension Qacc
of Q. Accusative extensions of a quantifier satisfy EC. This means that if, for
instance, the persons that Leo washes are the same as the persons that Dan
shaves than the following two sentence forms have the same truth values, for
any NP:

(23) Leo washes NP

(24) Dan shaves NP

This is not the case with functions denoted by simple proper GNPs. Consider
for instance the reflexive himself. Suppose again that persons that Dan washes
are the same as the persons that Leo shaves. In this case the following sentences
can fail to have the same truth value:

(25) Dan washes himself.

(26) Leo shaves himself.

Consider now the CNP the greatest number of languages. Suppose that the
set of languages that Dan speaks is the same as the set of languages that Leo
studies. It does not follow from this that the following sentences have the same
truth value:

(27) Dan speaks the greatest number of languages.

(28) Leo studies the greatest number of languages.

Thus simple GNPs denote functions which do not satisfy EC satisfied by
accusative extensions denoted by ONPs in the object position. Functions denoted
by reflexives satisfy the weaker PI condition and functions denoted by simple
comparatives satisfy the weaker AI condition.

Higher order GNPs are additionally different from ONPs and from simple
GNPs. To see this informally consider the following examples (cf. Zuber 2014):

(29) a. Leo and Lea hug each other/read the same books.

b. Bill and Sue hug each other/read the same books.

(30) Leo, Lea, Bill and Sue hug each other/read the same books.

Clearly (29a) in conjunction with (29b) does not entail (30). However, if we
replace each other or the same books by an ordinary NP or by a simple proper
GNP, the corresponding entailment holds. This means that the conjunction and
cannot be understood pointwise and that the functions denoted by GNPs like
the same CN and each other are of not the same type as functions denoted by
ONPs or by simple GNPs.

Observe that the non entailment of (30) from (29a) and (29b) in conjunction
with Proposition 3 indicates that the GNPs the same books and each other are
not accusative lifts (of any type 〈1〉 quantifier).

The question one can ask now is what is the logical type of the result of
the function denoted by GNPs which are reciprocals or HCNPs. We know that
sentences with such GNPs (in the object position) do not take proper nouns as
subjects and thus the type of objects denoted by the subject NP cannot be e, the
type corresponding to individuals. We can suppose that it is of the raised type
〈〈e, t〉, t〉, which, ignoring directionality, corresponds to the category S/(S/NP).
Since the same CN and each other form a verbal argument playing the role of
direct object, the same (CN) and each other apply to a transitive verb to form
a VP. Semantically, this verb phrase denotes a set of type 〈1〉 quantifiers. Thus,
in order to avoid the type mismatch, the verb phrase must be raised to become
of the category S/(S/(S/NP)). This can be done using the following higher
order reduction via function application (where ”+” symbolises the function
application):

(31) S/(S/NP)+ S(S/(S/NP)) = S

Thus in (31) the V P has been raised to the category S(S/(S/NP)) whose
type is now 〈〈〈e, t〉t〉t〉. This means that such raised VPs denote a set of type
〈1〉 quantifiers and consequently the sentence of the form (22) is true iff the
quantifier denoted by the NP belongs to the set denoted by the TV P GNP .
Keenan and Faltz 1985 show that (extensional) non-raised VPs (classically) de-
note, up to the isomorphism, specific characteristic functions of sets of type 〈1〉
quantifiers, that is they denote a set of quantifiers. The reason is that these
characteristic functions are in addition homomorphisms (from the algebra of
quantifiers to the algebra of truth-values) and the algebra of such homomorphic
functions is isomorphic to the algebra of sets (subsets of the universe), the clas-
sical denotational domain of VPs (or of one-place predicates in the first order
logic). Thus ”classical” denotations of VPs are homomorphic in the sense that
they preserve meets in particular. We have seen that this is not the case for the
VPs formed from higher order GNPs given the non-entailment between (29) and
(30) and consequently VPs with higher order GNPs do not denote sets, subsets
of E, but sets of type 〈1〉 quantifiers.

Let me start the discussion of formal properties by the following:

Proposition 5. Boolean algebra of type 〈1〉 quantifiers is isomorphic to the al-
gebra of intersective type 〈1, 1〉 quantifiers and to the algebra of co-intersective
quantifiers.

The proof of this proposition is obvious if one observes that there is one to
one correspondence between atoms of the algebra of type 〈1〉 quantifiers and
the atoms of the algebra of intersective quantifiers. Indeed for any set A the
singleton {A} is an atomic type 〈1〉 quantifier and the type 〈1, 1〉 quantifier FA
such that FA(X)(Y) = 1 iff X ∩ Y = A is an atom of the algebra of intersective
quantifiers.

Thus there are as many type 〈1〉 quantifiers as there are intersective quan-
tifiers. Since (cf. Keenan and Westerst̊ahl 1997) any type 〈1〉 quantifier is ex-
pressible (in English) by an ONP (of English) this means that there as many
(English) ONPs as there are intersective (or co-intersective) quantifiers. If the
universe E has n elements then there are 2k, for k = 2n type 〈1〉 quantifiers. But
there are much more anaphoric type 〈2 : 1〉 functions. As Keenan 2007 indicates
in this case there are 2m, for m = n × 2n functions satisfying PI. The number
off all functions from the set of binary relations to the set of sets equals kl for
k = 2n and l = 2n×n. This means that in the universe with just two elements
there are 16 type 〈1〉 quantifiers, 256 functions satisfying PI and 416 functions
from binary relations to sets.

Let us now define some functions denoted by some GNPs. To define the type
〈2 : 〈1〉〉 function EA denoted by the reciprocal each other we use the partition
Π(RS−) (Zuber 2016). Our definition is the definition ”by cases” which depend
on whether the partition Π(RS−) is trivial or non-trivial. Thus

Definition 10.
(i) EA(R) = {Q : Q ∈ PL ∧ ¬2(E) ⊆ Q} if RS− = ∅
(ii) EA(R) = {Q : Q ∈ PL ∧ QD(B) ⊆ Q}, if Π(RS−) is trivial with B as its
only block
(iii) EA(R) = {Q : Q ∈ PL ∧ ∃B(B ∈ Π(RS−) ∧ Q(D(B) = 1} ∪ {Q : Q ∈
PL ∧ ∃B(B ∈ Π(RS−) ∧Q = ¬QD(B)} if Π(RS−) is non-trivial.

Functions denoted by GNPs are anaphoric in the sense that they satisfy
predicate invariance conditions PI or HPI and do not satisfy stronger condi-
tions EC or HEC. We have already seen that SELF and ONLY -SELF are
anaphoric in that sense. Using proposition 5 and definition 8 we show that the
function EA in definition (10) is anaphoric (because for R = E×A the partition
Π(RS−) is trivial). Some other higher order anaphoric functions are discussed in
Zuber 2016 and Zuber 2017a. In particular RefDets and RecDets and properties
of functions they denote are discussed in Zuber 2017a.

To define the functions SAME(X,R) and SAME-N denoted by the same
CN and the same number of CN respectively, where CN denotes X, we will use
the set partitions defined by the following equivalence relations (Zuber 2017b):

Definition 11. (i) eR = {〈x, y〉 : xR = yR}
(ii) eR,n = {〈x, y〉 : card(xR) = card(yR)}

We will say that the block of a partition is singular if it is a singleton. A block
B is plural, B ∈ PL, if it is contains at least two elements. A partition is atomic
iff all its blocks are singular. With the help of these notions, using the partition

ΠRA
(E) we can now express the function SAME(X,R), where R is a binary

relation, as follows (for X and R non-empty and where RX is a subrelation of
R whose range is restricted to X):

Definition 12. SAME(X,R) =
(i)={Q : Q ∈ PLR ∧ ¬2(E) ⊆ Q}, if ΠRX

(E) is atomic
(ii)= {Q : Q ∈ PLR ∧ ∃B(B ∈ PL ∧B ∈ ΠRX

(E) ∧Q(B) = 1}∪
∪{Q : Q ∈ PLR ∧ ∃C⊆E∀B∈ΠRX

(E)C 6⊆ B) ∧ ¬ALL(C) ⊆ Q)}, if ΠRX
(E) is

not atomic.

The above definition says that SAME applied to a set X and a binary relation R
gives as result a set of quantifiers. This set can be decomposed into various sub-
sets depending on the structure of the partition of E induced by R and X. Clause
(i) says that when the partition is atomic then no two objects are in the relation
R with all objects of a sub-set of X. This entails that the quantifier denoted
by no two objects and any of its consequences belong to the set SAME(X,R).
This means that, for instance, the quantifiers denoted by no five objects or no
two students also belong to the set SAME(X,R).

Clause (ii) concerns the case where the partition is not atomic. In this case
there is at least one plural block of the partition such that all its members
are, roughly speaking, in the relation R with the same subset of X. This block
corresponds to the property expressing the sameness we are looking for and a
plural quantifier can be true or false of it. The second part of the clause (ii)
provides a set of quantifiers obtained from a ”negative information” given by
sets which are not blocks of the partition. If, for instance, Jiro and Taro are
Japanese students who read different books then no set to which they belong is
a block of ΠRB

(E) - where R corresponds to READ and B - to BOOK. Then,
according to the second part of the clause (ii), the quantifiers denoted by the
NPs not all Japanese students, not all students and not all Japanese belong to
SAME(B,R).

The definition of the function SAME-N denoted by the generalized deter-
miner the same number of is quite similar to the definition of the function
SAME(X,R). We just have to replace everywhere in definition 12 the partition
ΠRX

(E) by the partition ΠRX ,n(E). Consequently we have:

Definition 13. SAME-N(X,R)=
(i)={Q : Q ∈ PLR ∧ ¬2(E) ⊆ Q}, if ΠRX,n

(E) is atomic
(ii)= {Q : Q ∈ PLR ∧ ∃B(B ∈ PL ∧B ∈ ΠRX,n

(E) ∧Q(B) = 1}∪
∪{Q : Q ∈ PLR ∧ ∃C⊆E(C 6∈ ΠRX

(E) ∧ ¬ALL(C) ⊆ Q)}, if ΠRX
(E) is not

atomic.

Definitions 12 and 13 provide the readings of the same and the same number
of without the existential import that is without the presupposition that the set
denoted by CN is not empty. In order to get the reading in which the existential
import is involved the following equivalence relations have to be used:

Definition 14. eeiR = {〈x, y〉 : (xR = yR ∧ xR 6= ∅) ∨ (x = y)}

Definition 15. eeiR,n = {〈x, y〉 : (|xR| = |yR| ∧ xR 6= ∅) ∨ (x = y)}

The relation eeiR defines the partition Πei
R (E) and the relation eeiR,n defines

the partition Πei
R,n(E). It follows from definitions 14 and 15 that if aR = ∅, then

the singleton {a} is a singular block of both partitions Πei
R and Πei

R,n and thus
is not a member of any plural quantifier. Consequently the reading of the same
with the existential import is given in definition 16:

Definition 16. SAMEei(X,R)=
(i)={Q : Q ∈ PLR ∧ ¬2(E) ⊆ Q}, if Πei

RX
(E) is atomic

(ii)= {Q : Q ∈ PLR ∧ ∃B(B ∈ PL ∧B ∈ Πei
RX

(E) ∧Q(B) = 1}∪
∪{Q : Q ∈ PLR ∧ ∃C⊆E∀B∈Πei

RX
(E)C 6⊆ B) ∧ ¬ALL(C) ⊆ Q)}, if Πei

RX
(E) is

not atomic.

It is easy, though tedious, to show that functions defined in definitions 12, 13
and 16 satisfy HAI (and do not satisfy HEC). Consequently, higher order GNPs
also denote functions which are not accusative extensions of type 〈1〉 quantifiers.

5 Conclusive remarks

Generalized noun phrases are expressions which, syntactically play the role of
direct objects as do ordinary NPs. Semantically, however, they do not denote
type 〈1〉 quantifiers or their accusative extensions. Functions they denote satisfy
weaker conditions than the extension condition, which is satisfied by accusative
extensions of type 〈1〉 quantifiers. In spite of that they resemble quantifiers in
various ways.

We distinguished two types of GNPs, according to the type of functions they
denote: simple GNPs (for instance reflexives and predicate anaphors) denote type
〈2 : 1〉 functions and higher order GNPs (like reciprocals) denote type 〈2 : 〈1〉〉
functions. Both types of these functions satisfy similar invariance conditions and
both types of GNPs have their syntactic structure similar to the structure of
ONPs.

Syntactic similarity in the structures of GNPs and ONPs and the fact that
the two types of expressions, ONPs and GNPs can occur as different conjuncts in
the same Boolean compounds indicates that GNPs should not be considered as
a new syntactic category. Rather, to account for the specificity of their semantics
we should consider, in the spirit of Partee 1986 that the type of NPs can change
depending on the environment it finds itself in. In this case higher order GNPs
give rise to the VP raising.

Formal properties of GNPs presented in this paper shows that the existence
of anaphors and higher order comparative NPs strongly extends the expressive
power of NLs. Keenan 2007 and Keenan 2016 shows that denotations of reflexive
anaphors and predicate anaphors lie outside the class of classically defined gener-
alized quantifiers (they do not satisfy the extension condition). Results presented
in this paper show that in addition higher order GNPs form non-homomorphic
predicates which force the VP raising because because their denotations are not
lifts of type 〈2 : 1〉 functions.

References

Barwise, J. and Cooper, R. (1981) Generalized quantifiers and natural language. Lin-
guistics and Philosophy 4, pp. 159-219

Geach, P. T. (1968) Reference and Generality, Cornell University Press
Keenan, E. L.: On the denotations of anaphors. Research on Language and Computa-

tion5: 5-17
Keenan, E. L. (2016) In Situ Interpretation without Type Mismatches, Journal of

Semantics 33:1, pp. 87-106
Keenan, E. and Faltz L. (1985) Boolean Semantics for Natural Language, Reidel Pub-

lishing Company
Keenan, E. L. and Westerst̊ahl, D.: Generalized Quantifiers in Linguistics and Logic.

In: van Benthem, J. and ter Meulen, A. (eds.) Handbook of logic and language,
Elsevier, Amsterdam (1997) 837-893

Partee, B. (1986) Noun phrase interpretation and type-shifting principles, in Groe-
nendijk, J. et al. (eds.) Studies in Discourse Representation Theory and Theory of
Generalised Quantifiers Dordrecht: Forris, pp.115-143

Peters, S. and Westerst̊ahl D. (2006) Quantifiers in Language and Logic, Oxford U.P.
Zuber, R.: Semantic constraints on anaphoric determiners. Research on Language and

Computation 255-271
Zuber, R. (2011) Some generalised comparative determiners, in S. Pogodalla and J.-

P. Prost (Eds.): LACL 2011, LNAI 6736, Springer-Verlag Berlin Heidelberg, pp.
267-281

Zuber, R. (2014) Generalising Predicate and Argument Invariance, in Asher, N. and
Soloviev, S. (eds) Logical Aspects of Computational Linguistics, LACL 2014 Pro-
ceedings, Springer, pp.163-176

Zuber, R. (2016) Anaphors and Quantifiers, in Va̋a̋na̋nen, J. et al. (eds.) Logic, Lan-
guage, Information, and Computation, Springer, pp. 432-445

Zuber, R. (2017a) Reflexive and reciprocal determiners, in Hansen, H. H. et al. (eds.)
Logic, Language and computation, 11th International Tbilissi Symposium on Logic,
Language and Computation 2015. Selected and Revised Papers, Springer, pp. 185-
201

Zuber, R. (2016b) Set Partitions and the Meaning of the Same, Journal of Logic,
Language and Information 26: 1-20

